Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Surg Endosc ; 37(7): 5696-5702, 2023 07.
Article in English | MEDLINE | ID: covidwho-20242947

ABSTRACT

BACKGROUND: Health care accounts for almost 10% of the United States' greenhouse gas emissions, accounting for a loss of 470,000 disability-adjusted life years based on the health effects of climate change. Telemedicine has the potential to decrease health care's carbon footprint by reducing patient travel and clinic-related emissions. At our institution, telemedicine visits for evaluation of benign foregut disease were implemented for patient care during the COVID-19 pandemic. We aimed to estimate the environmental impact of telemedicine usage for these clinic encounters. METHODS: We used life cycle assessment (LCA) to compare greenhouse gas (GHG) emissions for an in-person and a telemedicine visit. For in-person visits, travel distances to clinic were retrospectively assessed from 2020 visits as a representative sample, and prospective data were gathered on materials and processes related to in-person clinic visits. Prospective data on the length of telemedicine encounters were collected and environmental impact was calculated for equipment and internet usage. Upper and lower bounds scenarios for emissions were generated for each type of visit. RESULTS: For in-person visits, 145 patient travel distances were recorded with a median [IQR] distance travel distance of 29.5 [13.7, 85.1] miles resulting in 38.22-39.61 carbon dioxide equivalents (kgCO2-eq) emitted. For telemedicine visits, the mean (SD) visit time was 40.6 (17.1) min. Telemedicine GHG emissions ranged from 2.26 to 2.99 kgCO2-eq depending on the device used. An in-person visit resulted in 25 times more GHG emissions compared to a telemedicine visit (p < 0.001). CONCLUSION: Telemedicine has the potential to decrease health care's carbon footprint. Policy changes to facilitate telemedicine use are needed, as well as increased awareness of potential disparities of and barriers to telemedicine use. Moving toward telemedicine preoperative evaluations in appropriate surgical populations is a purposeful step toward actively addressing our role in health care's large carbon footprint.


Subject(s)
COVID-19 , Greenhouse Gases , Telemedicine , Humans , United States , Animals , Retrospective Studies , Pandemics , Prospective Studies , COVID-19/epidemiology , Telemedicine/methods , Carbon Footprint , Life Cycle Stages
2.
Microbiol Spectr ; 11(3): e0510522, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2263704

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). SARS-CoV-2 propagation is mediated by the protein interaction between viral proteins and host cells. Tyrosine kinase has been implicated in viral replication, and hence, it has become a target for developing antiviral drugs. We have previously reported that receptor tyrosine kinase inhibitor blocks the replication of hepatitis C virus (HCV). In the present study, we investigated two receptor tyrosine kinase-specific inhibitors, amuvatinib and imatinib, for their potential antiviral efficacies against SARS-CoV-2. Treatment with either amuvatinib or imatinib displays an effective inhibitory activity against SARS-CoV-2 propagation without an obvious cytopathic effect in Vero E6 cells. Notably, amuvatinib exerts a stronger antiviral activity than imatinib against SARS-CoV-2 infection. Amuvatinib blocks SARS-CoV-2 infection with a 50% effective concentration (EC50) value ranging from ~0.36 to 0.45 µM in Vero E6 cells. We further demonstrate that amuvatinib inhibits SARS-CoV-2 propagation in human lung Calu-3 cells. Using pseudoparticle infection assay, we verify that amuvatinib blocks SARS-CoV-2 at the entry step of the viral life cycle. More specifically, amuvatinib inhibits SARS-CoV-2 infection at the binding-attachment step. Moreover, amuvatinib exhibits highly efficient antiviral activity against emerging SARS-CoV-2 variants. Importantly, we demonstrate that amuvatinib inhibits SARS-CoV-2 infection by blocking ACE2 cleavage. Taken together, our data suggest that amuvatinib may provide a potential therapeutic agent for the treatment of COVID-19. IMPORTANCE Tyrosine kinase has been implicated in viral replication and has become an antiviral drug target. Here, we chose two well-known receptor tyrosine kinase inhibitors, amuvatinib and imatinib, and evaluated their drug potencies against SARS-CoV-2. Surprisingly, amuvatinib displays a stronger antiviral activity than imatinib against SARS-CoV-2. Amuvatinib blocks SARS-CoV-2 infection by inhibiting ACE2 cleavage and the subsequent soluble ACE2 receptor. All these data suggest that amuvatinib may be a potential therapeutic agent in SARS-CoV-2 prevention for those experiencing vaccine breakthroughs.


Subject(s)
COVID-19 , Animals , Humans , SARS-CoV-2 , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Protein-Tyrosine Kinases/pharmacology , Life Cycle Stages
3.
Microbiol Spectr ; 11(1): e0194322, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2242938

ABSTRACT

We utilized a high-throughput cell-based assay to screen several chemical libraries for inhibitors of herpes simplex virus 1 (HSV-1) gene expression. From this screen, four aurora kinase inhibitors were identified that potently reduced gene expression during HSV-1 lytic infection. HSV-1 is known to interact with cellular kinases to regulate gene expression by modulating the phosphorylation and/or activities of viral and cellular proteins. To date, the role of aurora kinases in HSV-1 lytic infection has not been reported. We demonstrated that three aurora kinase inhibitors strongly reduced the transcript levels of immediate-early (IE) genes ICP0, ICP4, and ICP27 and impaired HSV-1 protein expression from all classes of HSV-1, including ICP0, ICP4, ICP8, and gC. These restrictions caused by the aurora kinase inhibitors led to potent reductions in HSV-1 viral replication. The compounds TAK 901, JNJ 7706621, and PF 03814735 decreased HSV-1 titers by 4,500-, 13,200-, and 8,400-fold, respectively, when present in a low micromolar range. The antiviral activity of these compounds correlated with an apparent decrease in histone H3 phosphorylation at serine 10 (H3S10ph) during viral infection, suggesting that the phosphorylation status of H3 influences HSV-1 gene expression. Furthermore, we demonstrated that the aurora kinase inhibitors also impaired the replication of other RNA and DNA viruses. These inhibitors significantly reduced yields of vaccinia virus (a poxvirus, double-stranded DNA, cytoplasmic replication) and mouse hepatitis virus (a coronavirus, positive-sense single-strand RNA [ssRNA]), whereas vesicular stomatitis virus (rhabdovirus, negative-sense ssRNA) yields were unaffected. These results indicated that the activities of aurora kinases play pivotal roles in the life cycles of diverse viruses. IMPORTANCE We have demonstrated that aurora kinases play a role during HSV-1 lytic infection. Three aurora kinase inhibitors significantly impaired HSV-1 immediate-early gene expression. This led to a potent reduction in HSV-1 protein expression and viral replication. Together, our results illustrate a novel role for aurora kinases in the HSV-1 lytic cycle and demonstrate that aurora kinase inhibitors can restrict HSV-1 replication. Furthermore, these aurora kinase inhibitors also reduced the replication of murine coronavirus and vaccinia virus, suggesting that multiple viral families utilize the aurora kinases for their own replication.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Immediate-Early Proteins , RNA Viruses , Animals , Mice , Herpesvirus 1, Human/genetics , Immediate-Early Proteins/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Cell Line , Herpes Simplex/genetics , DNA/metabolism , RNA/metabolism , Life Cycle Stages
4.
Sci Total Environ ; 871: 162083, 2023 May 01.
Article in English | MEDLINE | ID: covidwho-2229498

ABSTRACT

COVID-19 has accelerated the generation of healthcare (medical) waste throughout the world. Developing countries are the most affected by this hazardous and toxic medical waste due to poor management systems. In recent years, Bangladesh has experienced increasing medical waste generation with estimated growth of 3 % per year. The existing healthcare waste management in Bangladesh is far behind the sustainable waste management concept. To achieve an effective waste management structure, Bangladesh has to implement life cycle assessment (LCA) and circular economy (CE) concepts in this area. However, inadequate data and insufficient research in this field are the primary barriers to the establishment of an efficient medical waste management systen in Bangladesh. This study is introduced as a guidebook containing a comprehensive overview of the medical waste generation scenario, management techniques, Covid-19 impact from treatment to testing and vaccination, and the circular economy concept for sustainable waste management in Bangladesh. The estimated generation of medical waste in Bangladesh without considering the surge due to Covid-19 and other unusual medical emergencies would be approximately 50,000 tons (1.25 kg/bed/day) in 2025, out of which 12,435 tons were predicted to be hazardous waste. However, our calculation estimated that a total of 82,553, 168.4, and 2300 tons of medical waste was generated only from handling of Covid patients, test kits, and vaccination from March 2021 to May 2022. Applicability of existing guidelines, and legislation to handle the current situation and feasibility of LCA on medical waste management system to minimize environmental impact were scrutinized. Incineration with energy recovery and microwave sterilization were found to be the best treatment techniques with minimal environmental impact. A circular economy model with the concept of waste minimizaton, and value recovery was proposed for sustainable medical waste management. This study suggests proper training on healthcare waste management, proposing strict regulations, structured research allocation, and implementation of public-private partnerships to reduce, and control medical waste generation for creating a sustainable medical waste management system in Bangladesh.


Subject(s)
COVID-19 , Medical Waste , Waste Management , Humans , Animals , Bangladesh/epidemiology , COVID-19/epidemiology , Waste Management/methods , Delivery of Health Care , Life Cycle Stages
5.
PLoS One ; 18(1): e0280429, 2023.
Article in English | MEDLINE | ID: covidwho-2224469

ABSTRACT

We first qualitatively divide the cycle of an infectious disease outbreak into five distinct stages by following the adoption categorization from the diffusion theory. Next, we apply a standard mechanistic model, the susceptible-infected-recovered model, to simulate a variety of transmission scenarios and to quantify the benefits of various countermeasures. In particular, we apply the specific values of the newly infected to quantitatively divide an outbreak cycle into stages. We therefore reveal diverging patterns of countermeasures in different stages. The stage is critical in determining the evolutionary characteristics of the diffusion process. Our results show that it is necessary to employ appropriate diverse strategies in different stages over the life cycle of an infectious disease outbreak. In the early stages, we need to focus on prevention, early detection, and strict countermeasure (e.g., isolation and lockdown) for controlling an epidemic. It is better safe (i.e., stricter countermeasures) than sorry (i.e., let the virus spread out). There are two reasons why we should implement responsive and strict countermeasures in the early stages. The countermeasures are very effective, and the earlier the more total infected reduction over the whole cycle. The economic and societal burden for implementing countermeasures is relatively small due to limited affected areas, and the earlier the less burden. Both reasons change to the opposite in the late stages. The strategic focuses in the late stages become more delicate and balanced for two reasons: the same countermeasures become much less effective, and the society bears a much heavier burden. Strict countermeasures may become unnecessary, and we need to think about how to live with the infectious disease.


Subject(s)
Communicable Diseases , Epidemics , Animals , Communicable Diseases/epidemiology , Disease Outbreaks/prevention & control , Life Cycle Stages
6.
Sci Total Environ ; 869: 161833, 2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2211420

ABSTRACT

COVID-19 pandemic caused a significant increase in medical and infected domestic waste, greatly increasing risk of human infected with SARS-CoV-2. Therefore, it is critical to prevent the spread of SARS-CoV-2 from solid waste to humans. Current commercial disinfectants present a high carbon footprint issue. Hence, we prepared a renewable wheat straw-based bio-liquid that can damage SARS-CoV-2 RNA and protein. The wet thermochemical extraction (WTE) bio-liquid, with total organic carbon concentration exceeding 1892 mg/L, could effectively damage the virus. However, dry thermochemical extraction (DTE) samples were not efficient due to their low content of effective compounds. The life cycle assessment showed that WTE bio-liquid production implies lower energy and environmental negative impacts than DTE. Moreover, the process by-product, char, can simultaneously reduce 3.1 million tonnes of global CO2 emissions while used as coal substitute. Yield of bio-liquid extremely exceed commercial disinfectant with just 1 % wheat straw utilisation, which meet the demand of processing solid waste. Further, their costs are significantly lower than commercial disinfectants, which are suitable for developing countries. Therefore, the antiviral bio-liquid produced from agricultural straw can be a new way to meet the needs of preventing the spread of SARS-CoV-2 and resume the sustainable development of society.


Subject(s)
COVID-19 , Disinfectants , Humans , Animals , Solid Waste , SARS-CoV-2 , Biomass , Pandemics/prevention & control , RNA, Viral , COVID-19/prevention & control , Carbon Footprint , Life Cycle Stages
8.
Curr Top Microbiol Immunol ; 439: 305-339, 2023.
Article in English | MEDLINE | ID: covidwho-2173657

ABSTRACT

Coronaviruses have a broad host range and exhibit high zoonotic potential. In this chapter, we describe their genomic organization in terms of encoded proteins and provide an introduction to the peculiar discontinuous transcription mechanism. Further, we present evolutionary conserved genomic RNA secondary structure features, which are involved in the complex replication mechanism. With a focus on computational methods, we review the emergence of SARS-CoV-2 starting with the 2019 strains. In that context, we also discuss the debated hypothesis of whether SARS-CoV-2 was created in a laboratory. We focus on the molecular evolution and the epidemiological dynamics of this recently emerged pathogen and we explain how variants of concern are detected and characterised. COVID-19, the disease caused by SARS-CoV-2, can spread through different transmission routes and also depends on a number of risk factors. We describe how current computational models of viral epidemiology, or more specifically, phylodynamics, have facilitated and will continue to enable a better understanding of the epidemic dynamics of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , SARS-CoV-2/genetics , COVID-19/genetics , Genome, Viral , Genomics , Life Cycle Stages
9.
Sci Total Environ ; 862: 160842, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2150572

ABSTRACT

An integrated approach was employed in the present study to combine life cycle assessment (LCA) with quantitative microbial risk assessment (QMRA) to assess an existing sewage treatment plant (STP) at Roorkee, India. The midpoint LCA modeling revealed that high electricity consumption (≈ 576 kWh.day-1) contributed to the maximum environmental burdens. The LCA endpoint result of 0.01 disability-adjusted life years per person per year (DALYs pppy) was obtained in terms of the impacts on human health. Further, a QMRA model was developed based on representative sewage pathogens, including E. coli O157:H7, Giardia sp., adenovirus, norovirus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The public health risk associated with intake of pathogen-laden aerosols during treated water reuse in sprinkler irrigation was determined. A cumulative health risk of 0.07 DALYs pppy was obtained, where QMRA risks contributed 86 % of the total health impacts. The annual probability of illness per person was highest for adenovirus and norovirus, followed by SARS-CoV-2, E. coli O157:H7 and Giardia sp. Overall, the study provides a methodological framework for an integrated LCA-QMRA assessment which can be applied across any treatment process to identify the hotspots contributing maximum environmental burdens and microbial health risks. Furthermore, the integrated LCA-QMRA approach could support stakeholders in the water industry to select the most suitable wastewater treatment system and establish regulations regarding the safe reuse of treated water.


Subject(s)
COVID-19 , Sewage , Humans , Animals , Wastewater , Escherichia coli , SARS-CoV-2 , Risk Assessment , Water , Life Cycle Stages , Water Microbiology
10.
Front Immunol ; 13: 989298, 2022.
Article in English | MEDLINE | ID: covidwho-2065518

ABSTRACT

The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RNA binding proteins that are implicated in RNA metabolism, such as alternative splicing, mRNA stabilization and translational regulation. According to their different cellular localization, hnRNPs display multiple functions. Most hnRNPs were predominantly located in the nucleus, but some of them could redistribute to the cytoplasm during virus infection. HnRNPs consist of different domains and motifs that enable these proteins to recognize predetermined nucleotide sequences. In the virus-host interactions, hnRNPs specifically bind to viral RNA or proteins. And some of the viral protein-hnRNP interactions require the viral RNA or other host factors as the intermediate. Through various mechanisms, hnRNPs could regulate viral translation, viral genome replication, the switch of translation to replication and virion release. This review highlights the common features and the distinguish roles of hnRNPs in the life cycle of positive single-stranded RNA viruses.


Subject(s)
Heterogeneous-Nuclear Ribonucleoproteins , Positive-Strand RNA Viruses , Animals , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Life Cycle Stages , RNA, Messenger/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins , Viral Proteins/metabolism
11.
Br Dent J ; 233(4): 309-316, 2022 08.
Article in English | MEDLINE | ID: covidwho-2016667

ABSTRACT

Aims COVID-19 has significantly impacted the safety guidelines for personal protective equipment (PPE) within dental services. We quantified and compared the environmental impact of different forms of PPE.Methods The PPE items were divided into three categories: 1) the body protection category, which included disposable and reusable gowns; 2) the eye protection category, which included a visor with a disposable face shield and a reusable visor; and 3) the respiratory protection category, which included respirator FP2SLw, respirator FFP2 and surgical masks. The OpenLCA software was used for analysing and comparing the environmental impact of all PPE products in the three categories.Results The life cycle assessment results of this study showed that damage to human health was more significant for the reusable gown than the disposable gown for the body-protection-category PPE. A visor with a disposable face shield had a higher environmental footprint than the reusable visor across all impact categories for the eye protection category. In addition, a visor with a disposable face shield released five times more carbon dioxide equivalent emissions and used four times more dissipated water and three times more fossil fuels than the reusable visor. A disposable gown used four times more dissipated water and three times more fossil fuels than reusable gowns. For respiratory PPE, the FP2SLw respirator had the highest burden in all 16 categories, followed by the FFP2 respirator and then the surgical mask.Conclusion The environmental impact of PPE is notable and could be reduced through using less damaging domestic products and increased usage of reusables. In addition, the selection of PPE that are reusable and made of recyclable materials can help to minimise the environmental impact and reduce environmental resource depletion.


Subject(s)
COVID-19 , Animals , Dental Care , Fossil Fuels , Humans , Life Cycle Stages , Water
12.
Environ Sci Technol ; 56(18): 13398-13407, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-2016514

ABSTRACT

Massive diagnostic testing has been performed for appropriate screening and identification of COVID-19 cases in the ongoing global pandemic. However, the environmental impacts of COVID-19 diagnostics have been least considered. In this paper, the environmental impacts of the COVID-19 nucleic acid diagnostics were assessed by following a full cradle-to-grave life-cycle approach. The corresponding life-cycle anthology was established to provide quantitative analysis. Moreover, three alternative scenarios, i.e., material substitution, improved waste treatment, and electric vehicle (EV)-based transportation, were further proposed to discuss the potential environmental mitigation and conservation strategies. It was estimated that the life cycle of a single COVID-19 nucleic acid diagnostic test in China would lead to the emission of 612.9 g CO2 equiv global warming potential. Waste treatment, as a step of life cycle, worsen the environmental impacts such as global warming potential, eutrophication, and ecotoxicity. Meanwhile, diesel-driven transportation was considered as the major contributor to particulate air. Even though COVID-19 diagnostics are of the greatest importance to end the pandemic, their environmental impacts should not be ignored. It is suggested that improved approaches for waste treatment, low-carbon transportation, and a reliable pool sampling strategy are critical for the achievement of sustainable and green diagnostics.


Subject(s)
COVID-19 , Nucleic Acids , Animals , Carbon , Carbon Dioxide , Conservation of Natural Resources , Life Cycle Stages
13.
Am J Chin Med ; 50(4): 927-959, 2022.
Article in English | MEDLINE | ID: covidwho-1973869

ABSTRACT

Coronavirus disease 2019 (COVID-19) is currently a worldwide pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, there are no drugs that can specifically combat SARS-CoV-2. Besides, multiple SARS-CoV-2 variants are circulating globally. These variants may lead to immune escape or drug resistance. Natural products may be appropriate for this need due to their cost efficiency, fewer side effects, and antiviral activities. Considering these circumstances, there is a need to develop or discover more compounds that have potential to target SARS-CoV-2. Therefore, we searched for articles on natural products describing anti-SARS-CoV-2 activities by targeting the SARS-CoV-2 life cycle and the cytokine storm in COVID-19 from academic databases. We reviewed anti-SARS-CoV-2 activities of natural products, especially those that target the SARS-CoV-2 life cycle (angiotensin-converting enzyme 2, transmembrane serine protease 2, cathepsin L, 3CL protease, PL protease, RNA-dependent RNA polymerase, and helicase) and cytokine storm in COVID-19. This review may provide a repurposed approach for the discovery of specific medications using natural products to treat COVID-19 through targeting the SARS-CoV-2 life cycle and the cytokine storm in COVID-19.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Cytokine Release Syndrome/drug therapy , Drug Discovery , Humans , Life Cycle Stages , SARS-CoV-2
14.
Sci Total Environ ; 845: 157261, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-1926894

ABSTRACT

Sustainable tourism should be promoted as a new system for the sustainable management of resources from a socioeconomic and environmental point of view. For this purpose, it is necessary to develop a tool capable of assessing the impacts associated with the sector and to identify which actions are currently being addressed in order to achieve the desired sustainability. This timely study aims to describe the current framework of Life Cycle Assessment (LCA) and its application to the tourism sector. To address these questions, a total of 83 documents (77 reviews and 6 international reports) were evaluated, assessing the geographical distribution, the temporal evolution of the publications, as well as the most relevant characteristics of the tourism industry articles were evaluated such as, life cycle inventory (LCI), system boundaries, functional unit (FU), methods, environmental indicators and impact categories considered. The study identifies key recommendations on the progression of LCA in tourism sector. As important results, it stands out that 94 % of articles were from the last decade and 21 % of the articles reviewed cover sustainable tourism term, considering the three dimensions. This review showed that in LCA studies the most common method was CML 2001; the most widely used environmental indicator was the Carbon Footprint (CF) and the Global Warming Potential (GWP) was the impact category used in all the studies. Hence, LCA is a highly effective tool capable of assessing direct and indirect carbon emissions in tourism as well as the socioeconomic and environmental impacts generated in this sector. COVID-19 pandemic is also an object of discussion in the framework of the sustainable tourism together with advocating support for the eco-labelling and digitalisation of the tourism experiences as valuable tools to minimize environmental negativities, to promote mechanisms to access green markets and to frame successful synergies.


Subject(s)
COVID-19 , Tourism , Animals , COVID-19/epidemiology , Carbon Footprint , Humans , Life Cycle Stages , Pandemics
15.
Analyst ; 147(12): 2662-2670, 2022 Jun 13.
Article in English | MEDLINE | ID: covidwho-1864777

ABSTRACT

Malaria was regarded as the most devastating infectious disease of the 21st century until the COVID-19 pandemic. Asexual blood staged parasites (ABS) play a unique role in ensuring the parasite's survival and pathogenesis. Hitherto, there have been no spectroscopic reports discriminating the life cycle stages of the ABS parasite under physiological conditions. The identification and quantification of the stages in the erythrocytic life cycle is important in monitoring the progression and recovery from the disease. In this study, we explored visible microspectrophotometry coupled to machine learning to discriminate functional ABS parasites at the single cell level. Principal Component Analysis (PCA) showed an excellent discrimination between the different stages of the ABS parasites. Support Vector Machine Analysis provided a 100% prediction for both schizonts and trophozoites, while a 92% and 98% accuracy was achieved for predicting control and ring staged infected RBCs, respectively. This work shows proof of principle for discriminating the life cycle stages of parasites in functional erythrocytes using visible microscopy and thus eliminating the drying and fixative steps that are associated with other optical-based spectroscopic techniques.


Subject(s)
COVID-19 , Malaria, Falciparum , Malaria , Parasites , Animals , Erythrocytes/parasitology , Humans , Life Cycle Stages , Machine Learning , Microspectrophotometry , Pandemics , Plasmodium falciparum/physiology
16.
Virol Sin ; 37(3): 321-330, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1813214

ABSTRACT

Retromer and sorting nexins (SNXs) transport cargoes from endosomes to the trans-Golgi network or plasma membrane. Recent studies have unveiled the emerging roles for retromer and SNXs in the life cycle of viruses, including members of Coronaviridae, Flaviviridae and Retroviridae. Key components of retromer/SNXs, such as Vps35, Vps26, SNX5 and SNX27, can affect multiple steps of the viral life cycle, including facilitating the entry of viruses into cells, participating in viral replication, and promoting the assembly of virions. Here we present a comprehensive updated review on the interplay between retromer/SNXs and virus, which will shed mechanistic insights into controlling virus infection.


Subject(s)
Sorting Nexins , Viruses , Animals , Life Cycle Stages , Protein Transport , Sorting Nexins/genetics , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
17.
Mol Microbiol ; 117(6): 1308-1316, 2022 06.
Article in English | MEDLINE | ID: covidwho-1794604

ABSTRACT

There has been considerable recent interest in the life cycle of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), the causative agent of the Covid-19 pandemic. Practically every step in CoV replication-from cell attachment and uptake via genome replication and expression to virion assembly has been considered as a specific event that potentially could be targeted by existing or novel drugs. Interference with cellular egress of progeny viruses could also be adopted as a possible therapeutic strategy; however, the situation is complicated by the fact that there is no broad consensus on how CoVs find their way out of their host cells. The viral nucleocapsid, consisting of the genomic RNA complexed with nucleocapsid proteins obtains a membrane envelope during virus budding into the lumen of the intermediate compartment (IC) at the endoplasmic reticulum (ER)-Golgi interface. From here, several alternative routes for CoV extracellular release have been proposed. Strikingly, recent studies have shown that CoV infection leads to the disassembly of the Golgi ribbon and the mobilization of host cell compartments and protein machineries that are known to promote Golgi-independent trafficking to the cell surface. Here, we discuss the life cycle of CoVs with a special focus on different possible pathways for virus egress.


Subject(s)
COVID-19 , Pandemics , Animals , Humans , Life Cycle Stages , SARS-CoV-2 , Viral Envelope Proteins/genetics
18.
Environ Sci Process Impacts ; 24(5): 649-674, 2022 May 25.
Article in English | MEDLINE | ID: covidwho-1778646

ABSTRACT

The coronavirus disease 2019 (COVID-19) has swept the world and still afflicts humans. As an effective means of protection, wearing masks has been widely adopted by the general public. The massive use of disposable masks has raised some emerging environmental and bio-safety concerns: improper handling of used masks may transfer the attached pathogens to environmental media; disposable masks mainly consist of polypropylene (PP) fibers which may aggravate the global plastic pollution; and the risks of long-term wearing of masks are elusive. To maximize the utilization and minimize the risks, efforts have been made to improve the performance of masks (e.g., antivirus properties and filtration efficiency), extend their functions (e.g., respiration monitoring and acting as a sampling device), develop new disinfection methods, and recycle masks. Despite that, from the perspective of the life cycle (from production, usage, and discard to disposal), comprehensive solutions are urgently needed to solve the environmental dilemma of disposable masks in both technologies (e.g., efficient use of raw materials, prolonging the service life, and enabling biodegradation) and policies (e.g., stricter industry criteria and garbage sorting).


Subject(s)
COVID-19 , Pandemics , Animals , COVID-19/prevention & control , Humans , Life Cycle Stages , Pandemics/prevention & control , Plastics , SARS-CoV-2
19.
Sci Total Environ ; 827: 154416, 2022 Jun 25.
Article in English | MEDLINE | ID: covidwho-1730097

ABSTRACT

Disposal of medical waste (MW) must be considered as a vital need to prevent the spread of pandemics during Coronavirus disease of the pandemic in 2019 (COVID-19) outbreak in the globe. In addition, many concerns have been raised due to the significant increase in the generation of MW in recent years. A structured evaluation is required as a framework for the quantifying of potential environmental impacts of the disposal of MW which ultimately leads to the realization of sustainable development goals (SDG). Life cycle assessment (LCA) is considered as a practical approach to examine environmental impacts of any potential processes during all stages of a product's life, including material mining, manufacturing, and delivery. As a result, LCA is known as a suitable method for evaluating environmental impacts for the disposal of MW. In this research, existing scenarios for MW with a unique approach to emergency scenarios for the management of COVID-19 medical waste (CMW) are investigated. In the next step, LCA and its stages are defined comprehensively with the CMW management approach. Moreover, ReCiPe2016 is the most up-to-date method for computing environmental damages in LCA. Then the application of this method for defined scenarios of CMW is examined, and interpretation of results is explained regarding some examples. In the last step, the process of selecting the best environmental-friendly scenario is illustrated by applying weighting analysis. Finally, it can be concluded that LCA can be considered as an effective method to evaluate the environmental burden of CMW management scenarios in present critical conditions of the world to support SDG.


Subject(s)
COVID-19 , Medical Waste , Refuse Disposal , Waste Management , Animals , COVID-19/epidemiology , Humans , Life Cycle Stages , Pandemics/prevention & control , Solid Waste/analysis , Sustainable Development
20.
Viruses ; 14(2)2022 02 15.
Article in English | MEDLINE | ID: covidwho-1687060

ABSTRACT

Mathematical modelling of infection processes in cells is of fundamental interest. It helps to understand the SARS-CoV-2 dynamics in detail and can be useful to define the vulnerability steps targeted by antiviral treatments. We previously developed a deterministic mathematical model of the SARS-CoV-2 life cycle in a single cell. Despite answering many questions, it certainly cannot accurately account for the stochastic nature of an infection process caused by natural fluctuation in reaction kinetics and the small abundance of participating components in a single cell. In the present work, this deterministic model is transformed into a stochastic one based on a Markov Chain Monte Carlo (MCMC) method. This model is employed to compute statistical characteristics of the SARS-CoV-2 life cycle including the probability for a non-degenerate infection process. Varying parameters of the model enables us to unveil the inhibitory effects of IFN and the effects of the ACE2 binding affinity. The simulation results show that the type I IFN response has a very strong effect on inhibition of the total viral progeny whereas the effect of a 10-fold variation of the binding rate to ACE2 turns out to be negligible for the probability of infection and viral production.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Interferon Type I/immunology , Models, Theoretical , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/immunology , Computer Simulation , Humans , Kinetics , Life Cycle Stages , Markov Chains , Protein Binding , SARS-CoV-2/growth & development , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL